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Concurrency In Games

• There has been a dramatic increase in  compute power in 
consumer space in the last few years with multi-core

– Game industry has started the move to adopt concurrent 
programming

• Most multithreaded games today still follow the first 
generation of parallelism i.e. threading based on functional 
decomposition.

• Game is broken up into various subsystems each of which 
run on their own thread typically rendering, and AI 
sometimes physics too
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QUAKE 4 Engine

• The Engine is split up into 3 main Components
– The QUAKE 4 Engine (exe)

– idlib common library for all is stuff (math, timing , algorithms, 
memory management, parsers,… ) linked statically very well 
optimized with SSE,SSE2, SSE3.

– The Game DLL – the basic game dll implements classes 
specific to the game like Weapons, Vehicles, Characters, Script 
engine, AI, Game physics,… calls into the QUAKE 4 Engine for 
all of the lower level work.
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QUAKE 4 Analysis

• As per the V-tune Analysis QUAKE 4 was 
– CPU bound

– Predominantly Single threaded

– Roughly equal amount is being spent in the driver and the engine 
41% & 49% respectively

– Each of the major hotspots consume 2-4% of CPU time.

• Peek into the source revealed
– QUAKE 4 had a good separation between the renderer Front and 

Back end.

– Most of the time spent in the OpenGL driver came from the 
Renderer Backend.
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Constraints

– Threading an existing engine

– Time frame 4-6 months 

– Target platform – P4 dual core (3.2 Ghz) 

– Single core performance difference had to be less than 5% 
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Frontend

Backend

Threading

– To get most performance in a constrained time decided to 
functionally decompose the 2 largest blocks.

– Split the render into front-end and back-end 

– The backend was made to run on its own thread

– The front-end and back-end communicated through 
command queues and synchronization events

Thread 1 Thread 2

Cmd
Queue

Backend
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Threading

• The frame was prepared by the front end handed over to the 
back end while the front end prepared the next frame.

– Data specific to a frame was double buffered

– Data had to be allocated and freed safely.

– Front end managed allocation & deallocation of shared 
data. Data to be freed was kept till the backend was done 
and cleared at the front end just before reuse.

– Subsystems that were not thread safe had to be made 
thread safe models classes, animation, shadows, texture 
subsystems, deforms, loaders,  writers, vertex caches, …
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Synchronization

Front End Backend

Frame n
Frame n-1

Frame n
Frame n+1

Frame n+2 Frame n+1
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Issues with Threading

• Debugging The threaded code was the hardest

• Issues could be broadly categorized into 3 major types

– Data Race Conditions

– Object lifetime issues

– OpenGL context issues

• Moved all the time critical OpenGL calls to the backend used a 
synch mechanism for others

• Added a realtime toggle capaility to turn threading on and off 
along with a lock step mode to the threaded code where the 
front end and back end would run on separate threads but run 
lock step

• Used Synchronization points to slowly & painfully eliminate 
Data Races

• Added lots of initialization and destruction code to deal with 
lifetime issues

• Needed to batch certain commands to improve performance
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Performance Improvements

• Beta timeframe 
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Multi-Threaded Drivers

Driver
Thread

Driver

FIFO

Sound
Thread

Game

Engine

Loop

OpenGL
/D3D

Main
Thread 

Graphics

Driver
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Current Performance

Quake 4 Performance
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Renderer Threading with ETQW

- The whole renderer runs in a separate thread

- More work being done on the renderer thread 

- Culling and shadow volume construction

- Reduces amount of memory being buffered and shared 
between threads

- Triangle meshes are not double buffered 

- Better splitting of work on 2 cores

- Works better with multi-threaded drivers
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ETQW 

Quake Wars Performance
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Quake III Arena

• Renderer back-end runs in a separate thread

• Very similar to QUAKE 4

17



DOOM III

• Initially had the same threading as Quake III Arena

• Very much memory bound

• We actually removed the threading

• Instead SIMD optimized rendering pipeline

• The pipeline is optimized for cache usage

http://softwarecommunity.intel.com/articles/eng/2773.htm
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ETQW Threading overview
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Mega Texture Streaming
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Mega Texture Streaming

• The Mega Texture streaming thread dynamically 
sorts tile read requests.

• This thread is not doing any significant amount of 
work and mostly waits in place while data is being 
read from disk.

• The streaming is optimized using a texture 
database with an optimized layout to minimize seek 
times.

• The streaming thread reads 128 kB non-cached 
sector aligned blocks of data for optimal streaming 
from a DVD without polluting file system caches.
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Mega Texture Transcoding

22

Game 
Logic

Bot AI

Sound Engine

Renderer

Sound 
Driver

Graphics 
Driver

MegaTexture
Transcoding

MegaTexture 
Streaming



Mega Texture Transcoding

• Real-Time conversion from JPEG-like format to DXT.

• The transcoding uses highly optimized SIMD code 
and as such this thread does not consume a whole 
lot of CPU time.

• On systems based on the Core 2 microarchitecture 
the mega texture transcoding thread typically 
consumes less than 15% CPU time.

• Real-Time Texture Streaming & Decompression  
http://softwarecommunity.intel.com/articles/eng/1221.htm

• Real-Time DXT Compression
http://www.intel.com/cd/ids/developer/asmo-na/eng/324337.htm
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Sound Engine
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Sound Engine

• The sound system performs spatialization.

• Decompresses OGG sounds in real-time.

• The sound thread does not consume a whole lot of 
CPU (typically < 5% on a Core 2).
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Game Logic
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Game Logic

• The game logic runs at a fixed 30 Hz.

• The game code consumes quite a bit of CPU.

• A lot of this is collision detection and physics.

• The game logic itself typically involves lots of 
branchy code and can be expensive as well.
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Bot AI
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Bot AI

• The development of ETQW AI/bots did not start at 
the beginning of the project.

• On one hand this was a good thing because the AI 
implements thousands of game dependent rules 
that would have to change as the game is changed 
and tweaked during development.

• On the other hand the ETQW AI was developed in 
about a year which really is a short period of time 
to develop AI for a game with the complexity of 
ETQW.
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Bot AI

• The AI threading in ETQW was designed and 
planned from the start.

• As a result the threading had little impact on the 
development time.

• The threading actually forced us to implement AI 
with clear data separation from the game code 
because the data has to be buffered.

• This is a good thing!
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Bot AI

• The path and route finding system only run in the 
AI thread and as such do not need to be "thread 
safe".

• The collision detection system had to be made 
thread safe.

• At any point in time the AI can query the current 
collision state of the world.

• Unfortunately this introduces a source of non-
determinism because the AI can query the collision 
state while the physics, which runs in the game 
thread, is moving objects around at the same time.
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Bot AI
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static const int MIN_FRAME_DELAY = 0;

static const int MAX_FRAME_DELAY = 4;

HANDLE gameSignal;

HANDLE aiSignal;

Int gameFrameNum;

int lastAIGameFrameNum;

void GameThread() {

for ( ; ; ) {

SetCurrentGameOutputState();

AdvanceWorld();

SetCurrentGameWorldState();

gameFrameNum++

// let the AI thread know there's another game frame

::SetEvent( gameSignal );

// wait if the AI thread is falling too far behind

while( lastAIGameFrameNum < gameFrameNum - MAX_FRAME_DELAY ) {

::SignalObjectAndWait( gameSignal, aiSignal, INFINITE, FALSE );

}

}

}



Bot AI
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void AIThread() {

for ( ; ; ) {

// let the game thread know another AI frame has started

::SetEvent( aiSignal );

// never run more AI frames than game frames

while( lastAIGameFrameNum >= gameFrameNum - MIN_FRAME_DELAY ) {

::SignalObjectAndWait( aiSignal, gameSignal, INFINITE, FALSE );

}

lastAIGameFrameNum = gameFrameNum;

SetCurrentAIWorldState();

AdvanceAI();

SetCurrentAIOutputState();

}

}



Bot AI

• The last optimization we did in ETQW cut AI CPU 
usage in half and it took less than a minute to 
implement. We simply changed the 
MIN_FRAME_DELAY from zero to one.

• This reduces the think frequency of the AI to 15Hz.

• In Quake III Arena the bots were only thinking at 
10Hz.
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Threading On/Off

• Always implement an option to switch between 
threaded mode and non-threaded in real-time.

• This is very useful to see the true performance 
difference.

• Also makes it much easier when debugging the 
threaded code.
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Common Issues

• Load Imbalance

• Under utilization of processors

- Gustafson’s law increasing the amount of parallel work

- Adding new features in games like fracture, smoke, cloth, 
procedural texture

• Amdahl’s law - Need to reduce Serial time to 
improve scaling 

- Parallelize code as far as possible

- Vectorize serial code

- Reduce time spent in a serial memory allocator

• Over subscription

- Different Threaded subsystems

- Threading at various levels of the application stack

- Threaded middleware
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Scalability

• PCs have a broad range of capabilities from CPU to Graphics

• Even with a fixed target platform its hard to load balance for 
real game play.

• Scene complexity, interactivity, physics vary from scene to 
scene

• Need to think how to make best use of resources

• Granularity Vs Load Balancing

• Common threading infrastructure with priorities/QoS.



Alternate Threading Paradigms

• Data Decomposition 

AI

AI

AI

AI

Physics

Physics

Physics

Physics

Renderer



Alternate Threading Paradigms

• Task/Work decomposition / Pipeline

FrameAI Physics Render 
FE

Render 
BE

AI Physics
Render 

FE

Task Stealing

T0 T1
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Design with threading in mind

• Lot easier to thread code that’s designed well.

• Reduce the coupling (data-dependence) between 
subsystems

• Make them as asynchronous as far as possible.

• Factor a given subsystem into data and operations 
performed on the data (iterators).

• Make sure that data classes don’t store any iterator data 
and are reentrant.

• Have a mechanism to ensure validity of shared, mutable 
data.

• Intel's Threading Building Blocks (TBB) has some good 
resources like thread safe containers, efficient memory 
allocator, generic parallel algorithms (parallel for, ….) 
and its open source.
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Summary

• Threading Game Engines is not a trivial task - Game engines 
are very complex pieces of code with a relatively short shelf 
life.

• Game engines naturally lend themselves to functional 
decomposition but interdependence between the various 
subsystems can cause excessive synchronization and 
performance overheads.

• Functional decomposition leads to load imbalance and often 
performance is limited by the main thread. Need to 
Investigate alternate paradigms like Task Queues to improve 
load balance.

• Need to design and implement  debugging aids into the 
threading infrastructure

– Interaction with the GPU makes debugging harder
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10:30am - Gaming on the Go

12:00pm - COLLADA in the Game

02:30pm - Interactive Ray Tracing in Games

04:00pm - Speed Up Synchronization Locks

www.intel.com/software/graphics

09:00am - The Future of Programming for Multi-
Core with the Intel Compilers

10:30am - Getting the Most Out of Intel Graphics

12:00pm - Comparative Analysis of Game 
Parallelization

02:30pm - Threading Quake 4 and Quake Wars

Wednesday

Thursday
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