
Threading Game Engines

- QUAKE 4 & Enemy Territory QUAKE Wars

Anu Kalra - Intel Corporation

Jan Paul van Waveren - id Software

Feb 21, 2006

2

Agenda

• Concurrency In Games Today

• Analysis of QUAKE 4

• Renderer Threading QUAKE 4 and ETQW

• AI & Mega texture Threading in ETQW

• Common Performance Issues & Workarounds

• Building Scalability into threading design

4

Concurrency In Games

• There has been a dramatic increase in compute power in
consumer space in the last few years with multi-core

– Game industry has started the move to adopt concurrent
programming

• Most multithreaded games today still follow the first
generation of parallelism i.e. threading based on functional
decomposition.

• Game is broken up into various subsystems each of which
run on their own thread typically rendering, and AI
sometimes physics too

5

QUAKE 4 Engine

• The Engine is split up into 3 main Components
– The QUAKE 4 Engine (exe)

– idlib common library for all is stuff (math, timing , algorithms,
memory management, parsers,…) linked statically very well
optimized with SSE,SSE2, SSE3.

– The Game DLL – the basic game dll implements classes
specific to the game like Weapons, Vehicles, Characters, Script
engine, AI, Game physics,… calls into the QUAKE 4 Engine for
all of the lower level work.

6

QUAKE 4 Analysis

• As per the V-tune Analysis QUAKE 4 was
– CPU bound

– Predominantly Single threaded

– Roughly equal amount is being spent in the driver and the engine
41% & 49% respectively

– Each of the major hotspots consume 2-4% of CPU time.

• Peek into the source revealed
– QUAKE 4 had a good separation between the renderer Front and

Back end.

– Most of the time spent in the OpenGL driver came from the
Renderer Backend.

7

Constraints

– Threading an existing engine

– Time frame 4-6 months

– Target platform – P4 dual core (3.2 Ghz)

– Single core performance difference had to be less than 5%

8

Frontend

Backend

Threading

– To get most performance in a constrained time decided to
functionally decompose the 2 largest blocks.

– Split the render into front-end and back-end

– The backend was made to run on its own thread

– The front-end and back-end communicated through
command queues and synchronization events

Thread 1 Thread 2

Cmd
Queue

Backend

9

Threading

• The frame was prepared by the front end handed over to the
back end while the front end prepared the next frame.

– Data specific to a frame was double buffered

– Data had to be allocated and freed safely.

– Front end managed allocation & deallocation of shared
data. Data to be freed was kept till the backend was done
and cleared at the front end just before reuse.

– Subsystems that were not thread safe had to be made
thread safe models classes, animation, shadows, texture
subsystems, deforms, loaders, writers, vertex caches, …

10

Synchronization

Front End Backend

Frame n
Frame n-1

Frame n
Frame n+1

Frame n+2 Frame n+1

11

Issues with Threading

• Debugging The threaded code was the hardest

• Issues could be broadly categorized into 3 major types

– Data Race Conditions

– Object lifetime issues

– OpenGL context issues

• Moved all the time critical OpenGL calls to the backend used a
synch mechanism for others

• Added a realtime toggle capaility to turn threading on and off
along with a lock step mode to the threaded code where the
front end and back end would run on separate threads but run
lock step

• Used Synchronization points to slowly & painfully eliminate
Data Races

• Added lots of initialization and destruction code to deal with
lifetime issues

• Needed to batch certain commands to improve performance

12

Performance Improvements

• Beta timeframe

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

time demo fps_1 fps _2

SMP 0

SMP 1

13

Multi-Threaded Drivers

Driver
Thread

Driver

FIFO

Sound
Thread

Game

Engine

Loop

OpenGL
/D3D

Main
Thread

Graphics

Driver

Front

End

3D

HW

14

Current Performance

Quake 4 Performance

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

SMP 0 SMP 0

MutiThreaded Drv

SMP1 SMP 1

MutiThreaded Drv

15

Renderer Threading with ETQW

- The whole renderer runs in a separate thread

- More work being done on the renderer thread

- Culling and shadow volume construction

- Reduces amount of memory being buffered and shared
between threads

- Triangle meshes are not double buffered

- Better splitting of work on 2 cores

- Works better with multi-threaded drivers

16

ETQW

Quake Wars Performance

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

SMP 0 SMP 0

MutiThreaded Drv

SMP1 SMP 1

MutiThreaded Drv

Quake III Arena

• Renderer back-end runs in a separate thread

• Very similar to QUAKE 4

17

DOOM III

• Initially had the same threading as Quake III Arena

• Very much memory bound

• We actually removed the threading

• Instead SIMD optimized rendering pipeline

• The pipeline is optimized for cache usage

http://softwarecommunity.intel.com/articles/eng/2773.htm

18

19

ETQW Threading overview

Game
Logic

Bot AI

Sound Engine

Renderer

Sound
Driver

Graphics
Driver

MegaTexture
Transcoding

MegaTexture
Streaming

20

Mega Texture Streaming

Game
Logic

Bot AI

Sound Engine

Renderer

Sound
Driver

Graphics
Driver

MegaTexture
Transcoding

MegaTexture
Streaming

Mega Texture Streaming

• The Mega Texture streaming thread dynamically
sorts tile read requests.

• This thread is not doing any significant amount of
work and mostly waits in place while data is being
read from disk.

• The streaming is optimized using a texture
database with an optimized layout to minimize seek
times.

• The streaming thread reads 128 kB non-cached
sector aligned blocks of data for optimal streaming
from a DVD without polluting file system caches.

21

Mega Texture Transcoding

22

Game
Logic

Bot AI

Sound Engine

Renderer

Sound
Driver

Graphics
Driver

MegaTexture
Transcoding

MegaTexture
Streaming

Mega Texture Transcoding

• Real-Time conversion from JPEG-like format to DXT.

• The transcoding uses highly optimized SIMD code
and as such this thread does not consume a whole
lot of CPU time.

• On systems based on the Core 2 microarchitecture
the mega texture transcoding thread typically
consumes less than 15% CPU time.

• Real-Time Texture Streaming & Decompression
http://softwarecommunity.intel.com/articles/eng/1221.htm

• Real-Time DXT Compression
http://www.intel.com/cd/ids/developer/asmo-na/eng/324337.htm

23

Sound Engine

24

Game
Logic

Bot AI

Sound Engine

Renderer

Sound
Driver

Graphics
Driver

MegaTexture
Transcoding

MegaTexture
Streaming

Sound Engine

• The sound system performs spatialization.

• Decompresses OGG sounds in real-time.

• The sound thread does not consume a whole lot of
CPU (typically < 5% on a Core 2).

25

Game Logic

26

Game
Logic

Bot AI

Sound Engine

Renderer

Sound
Driver

Graphics
Driver

MegaTexture
Transcoding

MegaTexture
Streaming

Game Logic

• The game logic runs at a fixed 30 Hz.

• The game code consumes quite a bit of CPU.

• A lot of this is collision detection and physics.

• The game logic itself typically involves lots of
branchy code and can be expensive as well.

27

Bot AI

28

Game
Logic

Bot AI

Sound Engine

Renderer

Sound
Driver

Graphics
Driver

MegaTexture
Transcoding

MegaTexture
Streaming

Bot AI

• The development of ETQW AI/bots did not start at
the beginning of the project.

• On one hand this was a good thing because the AI
implements thousands of game dependent rules
that would have to change as the game is changed
and tweaked during development.

• On the other hand the ETQW AI was developed in
about a year which really is a short period of time
to develop AI for a game with the complexity of
ETQW.

29

Bot AI

• The AI threading in ETQW was designed and
planned from the start.

• As a result the threading had little impact on the
development time.

• The threading actually forced us to implement AI
with clear data separation from the game code
because the data has to be buffered.

• This is a good thing!

30

Bot AI

• The path and route finding system only run in the
AI thread and as such do not need to be "thread
safe".

• The collision detection system had to be made
thread safe.

• At any point in time the AI can query the current
collision state of the world.

• Unfortunately this introduces a source of non-
determinism because the AI can query the collision
state while the physics, which runs in the game
thread, is moving objects around at the same time.

31

Bot AI

32

static const int MIN_FRAME_DELAY = 0;

static const int MAX_FRAME_DELAY = 4;

HANDLE gameSignal;

HANDLE aiSignal;

Int gameFrameNum;

int lastAIGameFrameNum;

void GameThread() {

for (; ;) {

SetCurrentGameOutputState();

AdvanceWorld();

SetCurrentGameWorldState();

gameFrameNum++

// let the AI thread know there's another game frame

::SetEvent(gameSignal);

// wait if the AI thread is falling too far behind

while(lastAIGameFrameNum < gameFrameNum - MAX_FRAME_DELAY) {

::SignalObjectAndWait(gameSignal, aiSignal, INFINITE, FALSE);

}

}

}

Bot AI

33

void AIThread() {

for (; ;) {

// let the game thread know another AI frame has started

::SetEvent(aiSignal);

// never run more AI frames than game frames

while(lastAIGameFrameNum >= gameFrameNum - MIN_FRAME_DELAY) {

::SignalObjectAndWait(aiSignal, gameSignal, INFINITE, FALSE);

}

lastAIGameFrameNum = gameFrameNum;

SetCurrentAIWorldState();

AdvanceAI();

SetCurrentAIOutputState();

}

}

Bot AI

• The last optimization we did in ETQW cut AI CPU
usage in half and it took less than a minute to
implement. We simply changed the
MIN_FRAME_DELAY from zero to one.

• This reduces the think frequency of the AI to 15Hz.

• In Quake III Arena the bots were only thinking at
10Hz.

34

Threading On/Off

• Always implement an option to switch between
threaded mode and non-threaded in real-time.

• This is very useful to see the true performance
difference.

• Also makes it much easier when debugging the
threaded code.

35

36

Common Issues

• Load Imbalance

• Under utilization of processors

- Gustafson’s law increasing the amount of parallel work

- Adding new features in games like fracture, smoke, cloth,
procedural texture

• Amdahl’s law - Need to reduce Serial time to
improve scaling

- Parallelize code as far as possible

- Vectorize serial code

- Reduce time spent in a serial memory allocator

• Over subscription

- Different Threaded subsystems

- Threading at various levels of the application stack

- Threaded middleware

37

Scalability

• PCs have a broad range of capabilities from CPU to Graphics

• Even with a fixed target platform its hard to load balance for
real game play.

• Scene complexity, interactivity, physics vary from scene to
scene

• Need to think how to make best use of resources

• Granularity Vs Load Balancing

• Common threading infrastructure with priorities/QoS.

Alternate Threading Paradigms

• Data Decomposition

AI

AI

AI

AI

Physics

Physics

Physics

Physics

Renderer

Alternate Threading Paradigms

• Task/Work decomposition / Pipeline

FrameAI Physics Render
FE

Render
BE

AI Physics
Render

FE

Task Stealing

T0 T1

40

Design with threading in mind

• Lot easier to thread code that’s designed well.

• Reduce the coupling (data-dependence) between
subsystems

• Make them as asynchronous as far as possible.

• Factor a given subsystem into data and operations
performed on the data (iterators).

• Make sure that data classes don’t store any iterator data
and are reentrant.

• Have a mechanism to ensure validity of shared, mutable
data.

• Intel's Threading Building Blocks (TBB) has some good
resources like thread safe containers, efficient memory
allocator, generic parallel algorithms (parallel for, ….)
and its open source.

41

Summary

• Threading Game Engines is not a trivial task - Game engines
are very complex pieces of code with a relatively short shelf
life.

• Game engines naturally lend themselves to functional
decomposition but interdependence between the various
subsystems can cause excessive synchronization and
performance overheads.

• Functional decomposition leads to load imbalance and often
performance is limited by the main thread. Need to
Investigate alternate paradigms like Task Queues to improve
load balance.

• Need to design and implement debugging aids into the
threading infrastructure

– Interaction with the GPU makes debugging harder

42

10:30am - Gaming on the Go

12:00pm - COLLADA in the Game

02:30pm - Interactive Ray Tracing in Games

04:00pm - Speed Up Synchronization Locks

www.intel.com/software/graphics

09:00am - The Future of Programming for Multi-
Core with the Intel Compilers

10:30am - Getting the Most Out of Intel Graphics

12:00pm - Comparative Analysis of Game
Parallelization

02:30pm - Threading Quake 4 and Quake Wars

Wednesday

Thursday

43

